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On the stability of a shear layer 

By J. MENKES 
California Institute of Technology, Jet Propulsion Laboratory 

(Received 25 February 1969) 

The effects of density variation in the absence of gravity on the stability of a 
horizontal shear layer between two streams of uniform velocities is investigated. 
The density is assumed to decrease exponentially with height and the velocity is 
represented by U(y) = tanhy. 

The method of small disturbances is employed to obtain the neutral stability 
curve. It is demonstrated that disturbances with wave-numbers larger than the 
width of the transition layer are attenuated. 

Qualitative agreement with experimental evidence is obtained. 

1. Introduction 
The mixing zone between two parallel streams, each of which has initially 

uniform velocity and density, may be represented for the purpose of stability 
analysis by an inviscid shear layer. The general problem of stability of an inviscid 
fluid with continuously varying velocity and density distribution in a direction 
normal to the mean flow was first attacked by Taylor (1931) and Goldstein (1931). 
Employing the method of small disturbances, they obtained an equation of the 
Orr-Sommerfeld type. While the equation is linear, its coefficients depend on the 
velocity and density distribution in the unperturbed shear layer. In  order to 
render the problem mathematically tractable, they considered simple flows in 
which the velocity or velocity gradient is constant, and the density is constant or 
varies exponentially. The properties of the more general layer were to be deduced 
from a superposition of the simple flows. Drazin (1958) observed that a velocity 
distribution that varies as the hyperbolic tangent of the transverse co-ordinate 
can be handled analytically; such a profile does represent the transition of 
velocity rather well. Blackshear (1957) recognized the connexion between the 
stability of a flame downstream of a bluff body flame stabilizer and the investi- 
gations of Taylor and Goldstein. Another interesting application of the theory is 
concerned with the stability of a liquid film on the ablating body of a vehfole 
re-entering the atmosphere. Here we investigate the stability of a free, hetero- 
geneous shear layer, neglecting the influence of gravity. 

2. Derivation of the stability equation 
The equations of motion governing the behaviour of an inviscid fluid under the 

action of gravity (which is included initially to make the comparison with the 
work of Taylor, Goldstein and Drazin more convenient) are Euler’s equation 
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the condition of incompressibility Dp _ -  
Dt - O’ 

and the equation of continuity V . u = 0. 

The velocity components, the pressure and the density are assumed to consist of 
a time-independent part and a perturbation, i.e. 

(3) 

u = V[WY) + $& Y, t ) ] ,  2, = - V$L(X, y, 0, ( 4 4  

p = P ( Y )  + P ’ k  Y, t ) ,  P = Po[P(Y) +P‘(%, Y, t)l, (4b) 

$’ = +(y)exp[ik(x-ct)], c = c,+ici. ( 4 4  

Here, V = U(o0) = - U(  -a), and $‘ is a perturbation stream function. U(y), 
P(y) and P(y) describe the ambient state whose stability is to be investigated. 
x = x,/d,  y = yl/d, where xl, y1 are the physical co-ordinates and d is so chosen 
that dU/dy  = 1 at y = 0; thus d characterizes the width of the transition layer. 
Denoting the Froude number V2/gd by F and eliminating p‘ and p’ from equa- 
tions (l), (2) and (3) we obtain 

(U - c )  ($” - k2$) - U”$ + (lnP)’ [( u - c )  $‘ - (U  - c )  ’+] - (lnF)’$ = 0, ( 5 )  
F ( U - C )  

where primes denote differentiation with respect toy. We now set p = exp ( - 2Ly) 
and obtain: 

( U  - C) ( ~ ” -  k2$) - U”$ - 2L[( U - C) $’ - (U  -c) ’$1 +- 2L ___ ’ - - 0. (6) F U - c  

It is well known that J = 2L/F (the Richardson number) measures the ratio of 
the buoyancy forces to the inertia forces. I n  meteorological applications, where 
the characteristic length associated with the phenomena is usually large, 
buoyancy forces are very important. In  the kind of small-scale aerodynamic 
application that is under consideration here, the effect of gravity is usually 
negligible. The parameter L measures the degree of heterogeneity of inertia of 
the fluid. The density gradient through a flame is very sharp, and it is expected 
that this will have a considerable effect on the stability of the flow system. It is 
thus proposed to neglect the term in the equation that is mu%iplied by the 
Richardson number and keep the one that has L as its coefficient. The present 
investigation consequently endeavours to deal with the limiting case J = 0, and 
L * 0. 

3. Analysis 
Drazin (1958) recognized that a velocity distribution of the form U = tanh y 

can be studied analytically if the independent variable y is changed to U(y). 
With the aid of this transformation (which is essentially a hodograph transforma- 
tion), the stability equation is cast into a special form of the Lam6 equation. By a 
transformation of the dependent variable suggested by the method of Papperitz 
as applied to the hypergeometric equation (e.g. see Morse & Feshbach 1953, 
p. 539), equation (6) is cast into a form which under certain circumstances permits 
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one to obtain a trivial integral, namely, a constant. Only the degenerate case 
c = 0 is treated by Drazin. 

As the primary velocity distribution we take U(y) = tanh y, and we introduce 
U as the independent variable. Noting that 

dUldy = sech2y = 1-  U2, d2Uldy2 = - 2 U ( l -  U2) ,  

denoting now by primes differentiation with respect to U, and setting 

@(Y) = #(U)7 

with the boundary conditions k#( U )  = 0 at  U = k 1. 
It is instructive at this point to set L = c = 0,  thereby obtaining 

( 1 -  U2)$”-2U$’+ [ 2 - -  k2 ] $ =  0.  

The solution of equation (8), consistent with our boundary conditions, is the 
Legendre function P:( U ) ,  where 

PO, = Pl = U and P: = ( 1  - U2)*. 

These are the only two solutions, since k < 1 when L = 0.  
Equation (7) is of a rather simple type. Its singularities which are located at 

& 1 and c are regular singularities. It can be demonstrated that the point at  
infinity is also a regular singularity. The substitution into equation (7) of 

z = (U - I)-% (U - c)-at (U + 1)- g5, 

where the a’s are each one of the exponents relative to  the singularity and are 
given by 

L L 

leads to the equation 

1 

u+1 (u+1)(u--)(u-c) 
x [ (LW+Lh-2)  U-(L2A2c+LAc+2L)]Z = 0,  

with the boundary conditions that Z be regular at U = c and _+ 1. 

of the Riemann P-function: 
The most general solution of equation (9) can be written in the symbolic form 

+ 1  c - 1  00 

a1 a2 a3 7 

0 0 0 u u] .  

The fact that one each of the exponents relative to the singularities at + 1, - 1, 
and c vanishes implies that one of the solutions is regular there. For the case in 

L2/\2+Lh-2 = 0 
which 

and (L2h2C + LAC + 2L) = 0 (L  * O ) ,  



On the stability of a shear layer 521 

one of the exponents at infinity vanishes as well, thereby assuring a solution that 
is regular everywhere. The only such function is, of course, a constant. A sufficient 
condition for the existence of the solution, 2 = const., is 

LA= l o r  - 2  and c =  -L. 

The negative root for LA must be discarded because the exponent at U = - 1 
must be positive in order to satisfy the boundary conditions there. The fact that 
c is negative means that the waves propagate in phase with the heavier and lower 
(y < 0) fluid rather than in the upper and lighter layers. The neutral stability 
boundary is thus given by L A  = 1, i.e. by 

LZ+P = 1. 

4. Results and discussion 
The form of the neutral stability curve warrants a few words of explanation. 

The circle L2 + L2 = 1 corresponds to the upper branch of the stability boundary; 
the origin represents the degenerate lower branch of the stability boundary. The 
two 'branches' do actually join up in the complex domain. Thus the area con- 
tained between the two ' branches ' represents unstable disturbances. 

Disturbances having a wavelength less than the characteristic length d are 
stable. The effect of the density gradient is stabilizing. The latter conclusion is in 
qualitative agreement with the known fact that a cooled wall has a stabilizing 
effect on a boundary layer. A simple illustration of the effect of the density 
gradient may be had by the following considerations. Let us consider the cme of 
self-excited disturbances. This corresponds to ci += 0 and consequently U - c does 
not vanish in the real domain. Neglect the Froude number in (7) and multiply it 
by the complex conjugate $of $. If one now subtracts from the resultant equation 
its complex conjugate one obtains (the method is essentially the same as Lin's 
(1955)): 

or 

When both sides are integrated from - 00 to + 00 the left-hand side vanishes on 
account of the boundary conditions and we are left with the following generaliza- 
tion of Rayleigh's criterion: 

This integral illustrates what we have set out to show, namely, that for aninhomo- 
geneous fluid the fact that U" vanishes somewhere is not the proper criterion for 
the existence of amplified disturbances. The integral also shows that the quantity 
d(pd U/dy)/dy which was shown by Lees & Lin (1946) to dominate the behaviour 
of the inertial forces in the compressible (i.e. non-homogeneous) boundary layer 
arises naturally in the present criterion. There is, however, an essential difference 
between the free shear layer and a boundary layer-type shear flow. The free shear 
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layer is unstable for a band of disturbances even in the inviscid case (corre- 
sponding to infinite Reynolds number), whereas the ‘inviscid’ boundary layer is 
absolutely stable. 

The fact that only disturbances within a certain band of wavelengths are 
amplified has been demonstrated experimentally by Blackshear. While it must 
be borne in mind that his experimental configurationisnot the best approximation 
to the mathematical model investigated here, it is of interest to note that he found 
that disturbances with a non-dimensional wave-number of order unity or larger 
are stable. The effect of the density gradient is also qualitatively confirmed by his 
experiment. 

This paper presents the results of one phase of research carried out at the Jet  
Propulsion Laboratory, California Institute of Technology, under Contract 
No. DA-04-495-0rd 18, sponsored by the Department of the Army, Ordnance 
corps. 
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